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at higher twist. We propose sum rules for the excited anomalous dimensions where closed

expressions can still be provided, even at higher twist. We present several explicit three
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1. Introduction

The long range Bethe Ansatz solution of the mixing problem in N = 4 SYM allows to

compute multi-loop anomalous dimensions of various composite operators in a very efficient

way [1]. The main and unique obstacle is the celebrated wrapping problem [2] setting an

upper bound on the achievable order in the loop expansion. Within this bound, the exact

perturbative anomalous dimensions are recovered without approximation.

In some cases, we are interested in parametric classes of operators where we would like

to compute the spectrum as a closed function of the characterizing parameters (Lorentz

spin, operator length, etc.). This is a much more difficult question than merely asking the

value of the anomalous dimensions at a specific point in the parameter space.

A positive answer beyond one-loop is not known in the general case, but is available for

certain specific classes of operators where additional insight saves the day. A very simple

example is that of the composite operator

OL = TrFL + higher order mixing, (1.1)

where F is a component of the self-dual field strength [3 – 6]. In this case, it is possible to

derive compact five loop expressions for the anomalous dimension as a closed function of

the parameter L [6].

A much wider and more interesting class is that of quasipartonic operators [7]. They

span an integrable sector of QCD and its various supersymmetric generalizations, including

of course N = 4 SYM. In the cases relevant to our discussion, they take the form

ON =
∑

n1+···+nL

cn1,...,nL
Tr
(
Dn1X · · ·DnLX

)
, (1.2)

where D is a light-cone projected covariant derivative and X can be an elementary scalar

(ϕ) or a so-called good component of the gaugino (λ) or gauge (A) fields. In this context,

L is the twist of the operator and N is the total Lorentz spin.
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The case when X is a scalar identifies the sl(2) sector which is closed at all orders in

the gauge coupling [8]. The gaugino case describes special operators in the purely fermionic

closed sl(2|1) subsector which evolve autonomously under dilatations [9]. Finally, the gauge

operators close at one-loop and have a complicated pattern of higher order mixing [10].

In general, the one-loop classification of states is made simpler by the underlying

collinear sl(2) algebra under which the charges of ϕ, λ,A are s = 1
2 , 1,

3
2 respectively [11].

The twist L states belong to [s]⊗L and can be decomposed in irreducible infinite dimensional

sl(2) modules. The twist-2 case is very special since supersymmetry links together the three

physical values of s [12, 13]. One has a single supermultiplets and a universal anomalous

dimension γuniv(N) describing (with trivial shifts in the Lorentz spin) all the states. This

anomalous dimension can be computed at 3 loops as a closed function of N by invoking

the Kotikov, Lipatov, Onishchenko and Velizhanin (KLOV) principle leading to a simple

Ansatz in terms of nested harmonic sums [14].

The case of twist-3 is more complicated. There are in principle three distinct series

of modules associated to each elementary field [15]. Detailed results, including a nice

application of superconformal symmetry, are described in [16 – 18] for the scalar sector, [19]

for the gaugino sector, and [20, 21] for the gluon sector.

A curious fact is that the ground state (i.e. that with smallest anomalous dimension)

admits again closed expressions in all sectors based on suitably generalized KLOV-like

principles. As soon as one moves to higher twist, even in the simplest case of X = ϕ, it is

easy to check that no simple closed expressions describe the ground state whose anomalous

dimension is irrational. Therefore, the following basic questions naturally arise:

1. Why are twist-2 and 3 so special ?

2. Can we generalize the twist-2 and 3 closed expressions to higher twists ?

The aim of this paper is precisely that of answering the above questions. We shall show

that, at higher twist, it is possible to consider sums of (powers of) anomalous dimensions

of the ground and excited states. For these combinations, we shall provide quite simple

closed formulas as well as compact sum rules which are parametric in both N and the

twist L.

These expressions are a simple hidden constraint on the anomalous dimension whose

precise nature is not clear. In particular, they suggest similar sum rules at strong coupling

for the dual string states discussed for instance in [22 – 26].

The plan of the paper is the following. In section (2) we recall some basic facts

concerning the XXX−s integrable spin chain and provide several explicit examples in

section (3). The outcome of this analysis is summarized in section (4). In section (5) we

recall a few important properties of the large spin expansion of twist anomalous dimensions.

In section (6) we propose linear sum rules for the singlet anomalous dimensions of various

twist operators. In section (7) we present three loop results for these sum rules in the

scalar sector. These results suggest a twist-dependent conjecture formulated in section (8).

Various checks are performed in section (9). The subleading corrections at large spin are

computed in section (10). Quadratic sum rules are proposed in section (11), elaborated
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in section (12) and checked in section (13). A few results for cubic sum rules are finally

presented in section (14). Various appendices are devoted to some technical results.

2. The integrable XXX
−s chain

In this section, we briefly recall a few basic facts about the integrable XXX−s spin chain.

It describes the one-loop mixing of twist-L quasipartonic operators built with elementary

collinear conformal spin s fields. A nice and accessible recent review on this standard

material is [27]. Our presentation is brief and just sets up the language for the later

discussion.

2.1 Basic facts

The XXX−s chain is a quantum spin chain with sl(2,R) symmetry. Each site carries

the infinite dimensional [s] representation of the SL(2,R) collinear conformal group. The

decomposition rule for the tensor products of this representation reads

[s] ⊗ [s] =

∞⊕

n=0

[s+ n], (2.1)

and can be used to analyze the states of a chain with L sites. The local spin chain integrable

Hamiltonian reads

H =

L∑

n=1

Hn,n+1, (2.2)

with

Hn,n+1 = ψ(Jn,n+1) − ψ(2 s), ψ(z) =
d

dz
log Γ(z). (2.3)

The quantity Jn,n+1 is the spin of the two-site states

(~Sn + ~Sn+1)
2 = Jn,n+1 (Jn,n+1 − 1). (2.4)

This Hamiltonian is integrable and can be studied by Bethe Ansatz or Baxter techniques.

2.2 Relation with N = 4 SYM operators and anomalous dimensions

The XXX−s Hamiltonian is the mixing matrix for the one-loop renormalization of planar

composite operators of the form

OL(N) =
∑

n1+···+nL=N

cn1,...,nL
Tr
{
Dn1

+ X · · ·DnL

+ X
}
, (2.5)

where s = 1/2, 1, 3/2 for the physical cases X = ϕ, λ,A. A straightforward application

of eq. (2.1) leads to

[s]⊗L =

∞⊕

N=0

gL(N)

[
L

2
+N

]
, gL(N) =

(
N + L− 1

L− 1

)
, (2.6)
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which tells that there are gL(N) highest weight states with Lorentz spin N . These are

in 1-1 correspondence with the non-trivial (i.e. without roots at infinity) solutions of the

Bethe Ansatz equations (BAE)

(
uk + i s

uk − i s

)L

=

N∏

j=1
j 6=k

uk − uj − i

uk − uj + i
. (2.7)

A short calculation also provides the energy and momentum charges

E =
N∑

k=1

2 s

u2
k + s2

, ei P =
N∏

k=1

uk − i s

uk + i s
. (2.8)

These energies are the one-loop anomalous dimensions of the above operators, say

γ =
λ

8π
E, (2.9)

where λ is the ’t Hooft large Nc coupling.

Clearly, it is complicated to enumerate the full set of solutions to the BAE. A useful

alternative method is the Baxter approach described in the next section.

2.3 The Baxter equation for the XXX−s chain

An alternative approach to the solution of the BAE is based on the Baxter approach [28].

The main tool is the Baxter operator whose eigenvalues Q(u) obey a relatively simple

functional equation. If Q(u) is assumed to be a polynomial, then the Baxter equation is

equivalent to the algebraic Bethe Ansatz equations for its roots to be identified with the

Bethe roots. A more general discussion can be found in [27, 29].

In practice, the Baxter approach in the present case is quite simply stated. One

introduces the Baxter function which is the minimal polynomial with roots equal to the

Bethe roots

Q(u) =
N∏

k=1

(u− uk). (2.10)

The BA equations are equivalent to the Baxter equation that we write for general conformal

spin s (although we shall be mainly interested in the case s = 1/2)

(u+ i s)LQ(u+ i) + (u− i s)LQ(u− i) = t(u)Q(u). (2.11)

where

t(u) = 2uL + q2 u
L−2 + q3 u

L−3 + · · · + qL, (2.12)

q2 = −(N + Ls) (N + Ls− 1) + Ls (s− 1). (2.13)

The quantities q3, . . . , qL have the meaning of quantum numbers. They must be obtained

by consistence of the Baxter equation and the assumption of a polynomial Baxter function.

Once Q is found, the energy and momentum can be written in terms of Q as

E = i
[
(log Q(u))′

]+i s

−i s
, ei P =

Q(+i s)

Q(−i s) . (2.14)
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3. The XXX
−s chain at twist L = 2, . . . , 5

In order to set the stage for the later discussion and introduction of sum rules, we now

illustrate very explicitly the structure of the Baxter equation at various small twists L =

2, . . . , 5. Our results will be generically valid positive values s > 0 of the (quantized)

conformal spin.

3.1 Twist 2

For L = 2 and Lorentz spin N , the Baxter equation is

(u+ i s)2Q(u+ i) + (u− i s)2Q(u− i) = t(u)Q(u), (3.1)

with

t(u) = 2u2 + q2, (3.2)

q2 = N −N2 − 4N s− 2 s2. (3.3)

In this case, there are no additional quantum numbers. This follows from the trivial

multiplicities in

[s] ⊗ [s] =

∞⊕

N=0

[2 s+N ]. (3.4)

The Baxter polynomial with degree N (even or odd) is [30]

Q(u) = 3F2

(
−N N + 4 s− 1 s− i u

2 s 2 s

∣∣∣∣∣ 1
)
. (3.5)

The Baxter polynomial has parity

Q(−u) = (−1)N Q(u) −→ ei P = (−1)N . (3.6)

The energy is

E = i
[
(log Q(u))′

]+i s

−i s
= 4 [ψ(N + 2 s) − ψ(2 s)] , (3.7)

where

ψ(z) =
d

dz
log Γ(z). (3.8)

3.2 Twist 3

For L = 3 and spin N , the Baxter equation is

(u+ i s)3Q(u+ i) + (u− i s)3Q(u− i) = t(u)Q(u), (3.9)

with

t(u) = 2u3 + q2 u+ q3, (3.10)

q2 = N −N2 − 6N s− 6 s2. (3.11)
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In this case, there is an additional quantum number. This is related to the multiplicities

in

[s] ⊗ [s] ⊗ [s] =

∞⊕

n1,n2=0

[3 s+ n1 + n2] =

∞⊕

N=0

(N + 1) [3 s +N ]. (3.12)

Indeed, looking for a polynomial solution to the Baxter equation we find the condition

P (q3) = 0, degP = N + 1. (3.13)

Let us analyze the solutions for real s > 0.

Even N . For even N , the polynomial P reads

P (q3) = q3R(q3), R(q3) = R(−q3). (3.14)

Hence we can have q3 = 0 or q3 = ±q∗ for some values of q∗ 6= 0. The Baxter function

associated with q3 = 0 is even and is associated with a zero momentum state which turns

out to be the ground state.

The explicit form of Q(u) is known [31] and reads

Q(u) = 4F3

(
−N

2
N
2 + 3 s− 1

2
1
2 + i u 1

2 − i u
1
2 + s 1

2 + s 1
2 + s

∣∣∣∣∣ 1
)

= Q(−u). (3.15)

To compute the energy, it is convenient to relate Q to the Wilson polynomials

Wn(u2, a, b, c, d)

(a+ b)n (a+ c)n (a+ d)n
= 4F3

(
−n n+ a+ b+ c+ d− 1 a+ i u a− i u

a+ b a+ c a+ d

∣∣∣∣∣ 1
)
.

(3.16)

We find apart from a trivial scaling

Q(u) = WN/2

(
u2, s, s, s,

1

2

)
. (3.17)

Using the following formula from the appendix B of [31]

i
d

du
Wn(u2, a, a, c, d)

∣∣∣∣
u=i a

= (3.18)

= ψ(n+ a+ c) − ψ(a+ c) + ψ(n + a+ d) − ψ(a+ d) (3.19)

and the fact that W is invariant under permutations of a, b, c, d, we find the result

E = i
[
(log Q(u))′

]+i s

−i s
= (3.20)

2

[
ψ

(
N

2
+ 2 s

)
− ψ(2 s) + ψ

(
N

2
+ s+

1

2

)
− ψ

(
s+

1

2

)]
. (3.21)

Notice that for the interesting values s = 1/2, 1, 3/2 we can simplify the resulting expres-

sions and find

s =
1

2
, E(N) = 4

[
ψ

(
N

2
+ 1

)
− ψ(1)

]
, (3.22)

s = 1, E(N) = 4 [ψ(N + 3) − ψ(3)] , (3.23)

s =
3

2
, E(N) = 2

[
ψ

(
N

2
+ 3

)
+ ψ

(
N

2
+ 2

)
− ψ(3) − ψ(2)

]
. (3.24)
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The paired states with q3 = ±q∗ are associated with degenerate values of the energy. Some

of them can have zero momentum.

An example is the case N = 6 at s = 1
2 . The Baxter function associated with q3 = 0 is

Q(u) = u6 − 19u4

4
+

323u2

80
− 153

320
, γ =

22

3
, ei P = 1. (3.25)

There are other two solutions with P = 0 which are obtained with q3 = ±2
√

723. The

associated Baxter functions are related by parity. One of them reads

Q(u) = u6 +
2
√

723u5

13
+

235u4

52
+

5

143

√
241

3
u3 − 2523u2

2288
−

23
√

241
3 u

1144
+

155

9152
, (3.26)

and has

γ =
227

20
, ei P = 1. (3.27)

Odd N . For even N , the polynomial P is even

P (q3) = P (−q3). (3.28)

Hence we have only q3 = ±q∗ associated with degenerate states with Baxter functions

related by u→ −u. Again, some of these states can have zero momentum.

An example is the case N = 3 at s = 1
2 . There are two paired zero momentum states

with q3 = ±3
2

√
35 and Baxter function (the other is related by parity)

Q(u) = u3 +
3

2

√
5

7
u2 +

u

4
− 1

8
√

35
, γ =

15

2
, ei P = 1. (3.29)

3.3 Twist 4

For L = 4 and spin N the Baxter equation is

(u+ i s)4Q(u+ i) + (u− i s)4Q(u− i) = t(u)Q(u), (3.30)

with

t(u) = 2u4 + q2 u
2 + q3 u+ q4, (3.31)

q2 = N −N2 − 8N s− 12 s2. (3.32)

In this case, there are two quantum numbers. They must agree with the multiplicities in

[s]⊗ [s]⊗ [s]⊗ [s] =

∞⊕

n1,n2,n3=0

[4 s+ n1 + n2 + n3] =

∞⊕

N=0

(N + 1)(N + 2)

2
[4 s+N ]. (3.33)

If N is even, looking for a polynomial solution to the Baxter equation we find the conditions

P (q3, q4) = 0, (3.34)

q3R(q3, q4) = 0. (3.35)
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If q3 = 0, we find

P (0, q4) ≡ S(q4) = 0, degS =
N

2
+ 1. (3.36)

These are non-degenerate states with Q(u) = Q(−u) hence zero momentum. Notice that

in this case the transfer matrix is even, a property which is related to the parity invariance

of Q.

The solutions with q3 6= 0 appear in degenerate pairs and can have zero momentum. If

N is odd, looking for a polynomial solution to the Baxter equation we find again conditions

P (q3, q4) = 0, (3.37)

q3R(q3, q4) = 0. (3.38)

If q3 = 0, we find solutions with Q(u) = −Q(−u) hence non-zero momentum. The solutions

with q3 6= 0 appear in degenerate pairs and can have zero momentum.

3.4 Twist 5

For L = 5 and spin N the Baxter equation is

(u+ i s)5Q(u+ i) + (u− i s)5Q(u− i) = t(u)Q(u), (3.39)

with

t(u) = 2u5 + q2 u
3 + q3 u

2 + q4 u+ q5, (3.40)

q2 = N −N2 − 10N s− 20 s2. (3.41)

In this case, there are three quantum numbers. They must agree with the multiplicities in

[s]⊗5 =

∞⊕

N=0

(N + 1)(N + 2)(N + 3)

6
[5 s +N ]. (3.42)

We focus on the non-degenerate states. These are present for even N and when the transfer

matrix has definite parity. In this case, this means

t(u) = 2u5 + q2 u
3 + q4 u. (3.43)

The Baxter equation reduces to a polynomial in q4 that turns out to have degree

P (q4) = 0, degP =
N

2
+ 1, (3.44)

as in the L = 4 case.

4. Lessons from the previous analysis and general features

Let us stop to illustrate a few important features emerging from the previous long and

explicit discussion.
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1. The case L = 2 is well known. There is a single sl(2) highest state for each spin. It

has the correct zero momentum only for even spin.

2. The case L = 3 is also rather well known [16 – 20]. We consider only the zero momen-

tum states which are the only relevant ones to planar N = 4 SYM. For even spin, the

minimal energy state is a singlet. The other excited states appear always in degener-

ate pairs. For odd spin, there are no singlet states. Degenerate states are associated

with a symmetry in the planar limit relating traces with reversed traces [32]

Tr(Dn1ϕ · · ·DnLϕ) ↔ Tr(DnLϕ · · ·Dn1ϕ). (4.1)

3. For L > 3, the (zero momentum) highest weight states can be divided into two

subsets. Singlets with non degenerate energy, and Paired states with degeneracy 2.

From the symmetry of the Baxter equation it is easy to proof the

Theorem 1. The singlets are all obtained by solving the Baxter equation with the require-

ment that the transfer matrix eigenvalue t(u) has definite parity

t(−u) = (−1)L t(u). (4.2)

This sets to zero several quantum numbers. Let us relabel the remaining free quantum

numbers (conserved charges) as zi. The pattern is clear from the following list of definite

parity transfer matrices (remember that q2 is known)

t3(u) = 2u3 + q2 u, (4.3)

t4(u) = 2u4 + q2 u
2 + z1, (4.4)

t5(u) = 2u5 + q2 u
3 + z1 u, (4.5)

t6(u) = 2u6 + q2 u
4 + z1 u

2 + z2, (4.6)

t7(u) = 2u7 + q2 u
5 + z1 u

3 + z2 u. (4.7)

The number of singlet states for a certain twist is the number of possible values of these

quantum numbers. It is a function of the Lorentz spin given by the following simple formula

L = 2n, 2n + 1, # singlets =

(N
2 + n− 1

n− 1

)
. (4.8)

For illustration, we show in figures (1) and (2) the full spectrum of highest weight states

at L = 3, 4. A general feature is that the singlet part of the spectrum embraces the full

spectrum. In particular, the lowest and highest states are singlets.

5. Logarithmic scaling of the anomalous dimensions

The following general information is known about the band of highest weight anomalous

dimensions at generic twist L. We focus on the scalar s = 1/2 sector, but generalizations
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Figure 1: Full spectrum at twist L = 3.

are possible. In the N → ∞ limit, the minimal anomalous dimension has a logarithmic

scaling which is twist independent and reads

γmin ∼ f(g) log N. (5.1)

The most explicit proofs of this statement in N = 4 SYM are [33 – 35] and [36, 38].

The scaling function f(g) is proportional to the physical coupling, a.k.a. cusp anomalous

dimension [33]. It has been computed by integrability methods at all orders in [38] in full

agreement with the available perturbative calculations [37]. At three loops, it reads

f(g) = 4 g2
ph, (5.2)

g2
ph = g2 − ζ2 g

4 +
11

5
ζ2
2 g

6 + · · ·

= g2 − π2

6
g4 +

11π4

180
g6 + · · · . (5.3)

In twist-2, the physical principle behind the scaling eq. (5.1) is simply that the large N

limit is nothing but the quasi-elastic xBjorken → 1 deep inelastic scattering regime. This is

dominated by universal classical soft gluon emission characterized by the anomalous cusp

contribution.
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Figure 2: Full spectrum at twist L = 4.

The excited anomalous dimensions are expected to scale in the same way but with a

different prefactor ranging as follows [34]

f(g) log N < γ <
L

2
f(g) log N. (5.4)

We remark that this can be nicely understood, at strong coupling, in terms of the dual

string configurations which have L spikes each contributing 1
2 f(g) to the coefficient in the

case where they are equally spaced [26].

At next-to-leading logarithmic order, a general formula has been recently derived in [39]

for the minimal anomalous dimension at generic twist. It reads

γmin = f(g) log N + fsl(g, L) + suppressed terms, (5.5)

where, in our notation for the coupling

fsl(g, L) = (γE − (L− 2) log 2) f(g) − 2 (7 − 2L) ζ3 g
4 + (5.6)

+

(
−L− 4

3
π2 ζ3 + (62 − 21L) ζ5

)
g6 + · · · .
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This formula is remarkable because it gives the explicit twist dependence, reabsorb the

scaling function in a compact way and provides the other corrections as ζ-terms with

simple twist dependence.

Given the above general constraints, is it possible to explore analytically the spectrum

of highest weights at general twist ? A partially positive answer is provided by sum rules

that we now describe.

6. Linear sum rules at one-loop

Let γ
(s)
L,k(N) denote the anomalous dimensions of the various highest states, labeled by

k. We consider at one-loop all the three physical values s = 1/2, 1, 3/2 associated with

elementary scalars, gauginos, and gauge fields. We can compute the sum of the anomalous

dimensions of singlet states

Σ
(s)
L (N) =

∑

k∈ singlets

γ
(s)
L,k(N). (6.1)

It turns out that this quantity is rational ! The reason is very simple. The above sum can

be computed by the Baxter approach. The anomalous dimensions are given by a rational

function of the free charges which are not fixed by the parity constraint on the transfer

matrix. These charges are constrained and fully determined by a system of polynomial

equations. So, the point is to show that the sum of a rational function over the roots of a

system of (rational) polynomials is rational. This simple theorem is proved and discussed

in appendix (B).

Given a sequence of rational numbers describing the N dependence of Σ
(s)
L (N), it is

possible to look for closed formulas, by using some trial and error combination of harmonic

sums, as inspired by the low L cases. Our notation for harmonic sums is standard (a ∈ Z,

a = (a1, . . . , an) with ai ∈ Z)

Sa(N) =

N∑

k=1

(sign a)k

k|a|
, Sa,b(N) =

N∑

k=1

(sign a)k

k|a|
Sb(k). (6.2)

The following closed formulae are obtained for the cases L = 4, 5, 6, 7 (they are fulfilled by

any N we have been able to test, typically of the order O(100))

L = 4, 5 Σ
(s)
L (N) =

N
2∑

n=1

[
σ

(s)
L (n) − σ

(s)
L (0)

]
, (6.3)

L = 6, 7 Σ
(s)
L (N) =

N
2∑

n=1

n∑

m=1

[
σ

(s)
L (m) − σ

(m)
L (0)

]
, (6.4)

where for L = 4

σ
(1/2)
4 (n) = 6S1(n) + 2S1(2n − 1) − 2S−1(2n − 1), (6.5)

σ
(1)
4 (n) = 2S1(n) + 4S1(n+ 1) + 2S1(2n+ 1) − 2S−1(2n + 1), (6.6)

σ
(3/2)
4 (n) = 2S1(n+ 1) + 4S1(n + 2) + 2S1(2n + 1) − 2S−1(2n + 1), (6.7)
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for L = 5

σ
(1/2)
5 (n) = 8S1(n), (6.8)

σ
(1)
5 (n) = 6S1(n+ 1) + 2S1(2n + 1) − 2S−1(2n+ 1), (6.9)

σ
(3/2)
5 (n) = 2S1(n+ 1) + 6S1(n+ 2), (6.10)

for L = 6

σ
(1/2)
6 (n) = 10S1(n) + 2S1(2n − 1) − 2S−1(2n− 1), (6.11)

σ
(1)
6 (n) = 2S1(n) + 8S1(n+ 1) + 2S1(2n+ 1) − 2S−1(2n + 1), (6.12)

σ
(3/2)
6 (n) = 2S1(n+ 1) + 8S1(n + 2) + 2S1(2n + 1) − 2S−1(2n + 1), (6.13)

and for L = 7

σ
(1/2)
7 (n) = 12S1(n), (6.14)

σ
(1)
7 (n) = 10S1(n+ 1) + 2S1(2n + 1) − 2S−1(2n + 1), (6.15)

σ
(3/2)
7 (n) = 2S1(n+ 1) + 10S1(n+ 2). (6.16)

Notice that for s = 1/2 we can also write in a more uniform way

σ
(1/2)
4 (n) = 8S1(2n) + 4S−1(2n), (6.17)

σ
(1/2)
5 (n) = 8S1(n), (6.18)

σ
(1/2)
6 (n) = 12S1(2n) + 8S−1(2n), (6.19)

σ
(1/2)
7 (n) = 12S1(n). (6.20)

where we have exploited the remarkable identity

S1(2 s− 1) − S−1(2 s − 1) = 2S−1(2 s) + 4S1(2 s) − 3S1(s), s ∈ 2 N. (6.21)

7. Linear sum rules at three loop results in the scalar sector

Starting from the one-loop Bethe roots evaluated with the Baxter approach, one can build

the multi-loop anomalous dimensions by feeding the long-range Bethe equations of [1].

This is quite easy in the s = 1/2 case where the Bethe equations are not nested. The

procedure is standard (see for instance the detailed discussion in [17]). From a long list for

several even values of N , one makes an Ansatz with higher transcendentality nested sums

and solves the over constrained system of equations. Dropping for simplicity the s = 1/2

label and denoting

σL(n) =
∑

ℓ≥1

g2 ℓσL,ℓ(n), (7.1)

one finds the following solutions.
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L = 4. The argument of the harmonic sums is

S··· ≡ S···(2n). (7.2)

σ4,2 = 16S−3+24S3−16S−2,−1−8S−2,1−8S−1,−2−8S−1,2−16S1,−2

−16S1,2−16S2,−1−24S2,1, (7.3)

σ
(1/2)
4,3 = 104S−5+184S5−144S−4,−1−104S−4,1−192S−3,−2−112S−3,2−144S−2,−3

−96S−2,3−96S−1,−4−96S−1,4−192S1,−4−192S1,4−184S2,−3−248S2,3−176S3,−2

−288S3,2−144S4,−1−216S4,1+64S−3,−1,−1+128S−3,−1,1+64S−3,1,−1+32S−3,1,1

+64S−2,−2,−1+96S−2,−2,1+64S−2,−1,−2+64S−2,−1,2+32S−2,1,−2+32S−2,1,2

+64S−2,2,−1+32S−2,2,1+64S−1,−3,−1+64S−1,−3,1+32S−1,−2,−2+32S−1,−2,2

+32S−1,2,−2+32S−1,2,2+64S−1,3,−1+64S−1,3,1+128S1,−3,−1+128S1,−3,1+64S1,−2,−2

+64S1,−2,2+64S1,2,−2+64S1,2,2+128S1,3,−1+128S1,3,1+128S2,−2,−1+80S2,−2,1

+64S2,−1,−2+64S2,−1,2+96S2,1,−2+96S2,1,2+128S2,2,−1+160S2,2,1+128S3,−1,−1

+64S3,−1,1+128S3,1,−1+192S3,1,1 . (7.4)

L = 5. The argument of the harmonic sums is

S··· ≡ S···(n). (7.5)

σ5,2 = 8S3−8S1,2−12S2,1, (7.6)

σ5,4 = 21S5−24S1,4−38S2,3−46S3,2−36S4,1+16S1,2,2+32S1,3,1

+24S2,1,2+40S2,2,1+48S3,1,1 . (7.7)

L = 6. The argument of the harmonic sums is

S··· ≡ S···(2n). (7.8)

σ6,2 = 40S−3+48S3−32S−2,−1−24S−2,1−16S−1,−2−16S−1,2−24S1,−2

−24S1,2−32S2,−1−40S2,1, (7.9)

σ6,3 = 576S−5+736S5−480S−4,−1−384S−4,1−560S−3,−2−448S−3,2−400S−2,−3

−352S−2,3−192S−1,−4−192S−1,4−288S1,−4−288S1,4−464S2,−3−512S2,3

−560S3,−2−672S3,2−480S4,−1−576S4,1+256S−3,−1,−1+320S−3,−1,1

+256S−3,1,−1+192S−3,1,1+192S−2,−2,−1+224S−2,−2,1+128S−2,−1,−2+128S−2,−1,2

+96S−2,1,−2+96S−2,1,2+192S−2,2,−1+160S−2,2,1+128S−1,−3,−1+128S−1,−3,1

+64S−1,−2,−2+64S−1,−2,2+64S−1,2,−2+64S−1,2,2+128S−1,3,−1+128S−1,3,1

+192S1,−3,−1+192S1,−3,1+96S1,−2,−2+96S1,−2,2+96S1,2,−2+96S1,2,2+192S1,3,−1

+192S1,3,1+256S2,−2,−1+224S2,−2,1+128S2,−1,−2+128S2,−1,2+160S2,1,−2

+160S2,1,2+256S2,2,−1+288S2,2,1+320S3,−1,−1+256S3,−1,1

+320S3,1,−1+384S3,1,1 . (7.10)

– 15 –



J
H
E
P
0
6
(
2
0
0
8
)
1
0
3

L = 7. The argument of the harmonic sums is

S··· ≡ S···(n). (7.11)

σ7,2 = 14S3 − 12S1,2 − 20S2,1, (7.12)

σ7,3 = 61S5 − 36S1,4 − 70S2,3 − 94S3,2 − 84S4,1+24S1,2,2+48S1,3,1

+40S2,1,2+72S2,2,1+96S3,1,1 . (7.13)

Notice that for s = 1/2 the general expressions

L = 4, 5 Σ
(s)
L (N) =

N
2∑

n=1

[
σ

(s)
L (n) − σ

(s)
L (0)

]
, (7.14)

L = 6, 7 Σ
(s)
L (N) =

N
2∑

n=1

n∑

m=1

[
σ

(s)
L (m) − σ

(m)
L (0)

]
, (7.15)

simplify since σ
(1/2)
L (0) for all the considered L and up to 3 loops.

8. Linear sum rules: structural properties and twist-dependent formulas

The previous results show various remarkable structural properties. These are

1. The general formula for ΣL up to three loops takes the form

ΣL(N) =

N
2∑

n1=1

n1∑

n2=1

· · ·
np−1∑

np=1

σL(np), (8.1)

where the number of sums is p = n− 1 for both L = 2n and L = 2n+ 1.

2. The internal function σL(np) can be written as a linear combination of harmonic

sums with total transcendentality equal to 2 ℓ−1 where ℓ is the loop order ℓ = 1, 2, 3.

3. The argument of the harmonic sums is np for odd L and 2np for even L.

4. The multi-index of the harmonic sums does involve only positive indices for odd L.

5. The set of multi-indices is the same for all even L and fixed loop order. The same is

true for odd L with a different set of indices.

We have extended the calculation up to L = 13 testing the above structural properties. In

all the considered cases they hold. Also, looking at the L dependence of the coefficients

of the harmonic sums, we have been able to write down the following compact and, in our

opinion, remarkable expressions.
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8.1 Odd twist

Up to three loops, we have

ΣL(N) = 2 (L− 1)SX,1 g
2 +

[
(3L− 7)SX,3 − 2 (L− 1)SX,1,2 − 4 (L− 2)SX,2,1

]
g4 +

+
[
(20L − 79)SX,5 − 6 (L− 1)SX,1,4 − 12 (2L − 7)SX,4,1 +

−2 (8L − 21)SX,2,3 − 2 (12L − 37)SX,3,2 + 4 (L− 1)SX,1,2,2 +

+8 (L− 2)SX,2,1,2 + 8 (2L − 5)SX,2,2,1 + 8 (L − 1)SX,1,3,1 +

+24 (L − 3)SX,3,1,1

]
g6 + · · · . (8.2)

where

SX,a ≡ SX,a

(
N

2

)
, X = {0, · · · , 0}︸ ︷︷ ︸

L−3

2

, (8.3)

and a harmonic sum with trailing 0 indices is defined as

S0,a(N) =
N∑

n=1

Sa(n). (8.4)

This is the usual definition provided we define sign(0) ≡ 1.

The above formula works in all the considered case. It also works for L = 3 up to two

loops. The three loop term is not covered for this initial value.

8.2 Even twist

Due to the larger computational complexity of the even twist case, we only present a result

at the two loop level. We define in this case

S̃X,a ≡ S̃X,a

(
N

2

)
, X = {0, · · · , 0}︸ ︷︷ ︸

L−2

2

(8.5)

and (notice the most inner 2 ip argument)

S̃0,...,0︸︷︷︸
p

,a(n) =

n∑

i1=1

i1∑

i2=1

i2∑

i=13

· · ·
ip−1∑

ip=1

Sa(2 ip) (8.6)

One finds for even L ≥ 4

Σ
(1/2)
L (N) =

[
2L S̃X,1 + 2 (L− 2) S̃X,−1

]
g2 + (8.7)

+
[
4(3L− 8) S̃X,−3 + 12(L− 2) S̃X,3 − 8(L− 2) S̃X,−2,−1 − 8(L− 3) S̃X,−2,1

−4(L− 2) S̃X,−1,−2 − 4(L− 2) S̃X,−1,2 − 4L S̃X,1,−2 − 4L S̃X,1,2

−8(L− 2) S̃X,2,−1 − 8(L− 1) S̃X,2,1

]
g4 + · · · .
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9. Large N check: recovering the cusp anomalous dimension

An important check of the previous results eqs. (8.2), (8.7) is that for large N all the

ground and excited anomalous dimensions are expected to scale logarithmically with N

with a coupling dependence reabsorbed in the physical coupling g2
ph.

To check this, let ~a = (a1, a2, · · · ) and ~ak = ak. If ~a1 6= 1 we have at large N

SX,1,~a(N) ∼ Np

p !
S~a(∞) log N, X = 0 · · · 0︸ ︷︷ ︸

p

. (9.1)

Apart from trivial factors depending on the multiplicity of the singlet set of states, we can

read the coefficient of the logarithmic leading term by collecting all the nested harmonic

sums with a leading 1 index and replacing

S1,~a(N) → S~a(∞). (9.2)

We now present the detailed check of the g2
ph reshuffling for all the expressions that we

have listed in the previous sections.

9.1 Odd twist at three loops

In this case, we use eq. (8.2) and write

ΣL(N) ∼ 1

p !

(
N

2

)p

h(g) log N, p =
L− 3

2
, (9.3)

where the function h(g) is

h(g) = 2 (L− 1) g2 + (9.4)

+
[
− 2 (L− 1)S2(∞)

]
g4 +

+
[
− 6 (L− 1)S4(∞) + 4 (L− 1)S2,2(∞) + 8 (L− 1)S3,1(∞)

]
g6 + · · · .

Notice that the number of singlets is asymptotically

# singlets =

(N
2 + p

p

)
∼ 1

p !

(
N

2

)p

(9.5)

Hence, we can divide by the multiplet dimension and write

ΣL(N) ∼ h(g) log N. (9.6)

Replacing the following asymptotic sums

S2(∞) = ζ2 =
π2

6
, S2,2(∞) =

7π4

360
, (9.7)

S4(∞) = ζ4 =
π4

90
, S3,1(∞) =

π4

72
, (9.8)

we find

h(g) = 2 (L− 1)

(
g2 − ζ2 g

4 +
11π4

180
g6 + · · ·

)
=

= 2 (L− 1) g2
ph. (9.9)
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9.2 L = 4 at three loops

The quantities σ4,ℓ contain the following nested sums with a leading 1 (and argument 2n)

σ4,1 = 8S1 + · · · , (9.10)

σ4,2 = −16 (S1,2 + S1,−2) + · · · , (9.11)

σ4,3 = −192 (S1,4 + S1,−4) + 128 (S1,3,1 + S1,3,−1 + S1,−3,1 + S1,−3,−1) +

+64 (S1,2,2 + S1,2,−2 + S1,−2,2 + S1,−2,−2) + · · · . (9.12)

The required asymptotic values are

S2 + S−2|∞ =
π2

12
, (9.13)

S4 + S−4|∞ =
π4

720
, (9.14)

S3,1 + S3,−1 + S−3,1 + S−3,−1|∞ =
π4

288
, (9.15)

S2,2 + S2,−2 + S−2,2 + S−2,−2|∞ =
7π4

1440
. (9.16)

Collecting, we find

σ4 ∼ 8 log N

(
g2 − ζ2 g

4 +
11π4

180
g6 + · · ·

)

= 8 log N g2
ph . (9.17)

9.3 L = 6 at three loops

The quantities σ6,ℓ contain the following nested sums with a leading 1 (and argument 2n)

σ6,1 = 12S1 + · · · , (9.18)

σ6,2 = −24 (S1,2 + S1,−2) + · · · , (9.19)

σ6,3 = −288 (S1,4 + S1,−4) + 192 (S1,3,1 + S1,3,−1 + S1,−3,1 + S1,−3,−1) +

+96 (S1,2,2 + S1,2,−2 + S1,−2,2 + S1,−2,−2) + · · · . (9.20)

With the previous asymptotic values, we find

σ6 ∼ 12 log N

(
g2 − ζ2 g

4 +
11π4

180
g6 + · · ·

)

= 12 log N g2
ph . (9.21)

9.4 General even L at two loops

The asymptotic values given for the cases L = 4, 6 are sufficient to check the two loop

general even L case.
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10. Linear sum rules: subleading corrections at large N

We can take our master formula for odd twist eq. (8.2) and expand ΣL(N) at large N

computing the subleading part analogous to fsl defined in eq. (5.5). The expansion requires

a treatment of multiple sums with various trailing zeroes of the form

S0,...,0︸︷︷︸
p

,X. (10.1)

They can be treated with the nice results reported in appendix (C). It is clear that some

structure immediately arises. For instance, let us consider the twist 5 case where p = 1.

The leading terms in Σ , proportional to N , arise from sums of the form S0,1,a,X(n) where

n = N/2 and a > 1. From eq. (C.5) of appendix (C), we get

S0,1,a,X(n) = (n+ 1)S1,a,X(n) − S0,a,X(n) (10.2)

= (n+ 1) [S1,a,X(n) − Sa,X(n)] + Sa−1,X(n). (10.3)

For large n, we need only the first bracket whose expansion contains the terms

S1,a,X(n) − Sa,X(n) = (log n+ γE − 1) ζa,X + . . . , (10.4)

where dots denote other constant terms. The first part combines to give the physical

coupling which thus must appear in the combination

(log n+ γE − 1) g2
ph. (10.5)

The prefactor is easily generalized to a generic odd twist, i.e. p > 1. The leading term of

S0,...,0︸︷︷︸
p

,1,X(n) for large n replaces it by the general form

log n+ γE − 1 → 1

p!
[ap(log n+ γE) − bp] , (10.6)

where

ap = ap−1 = 1, (10.7)

bp = bp−1 −
1

p
, b1 = 1, −→ bp = S1(p). (10.8)

The remaining subleading pieces can be worked out in a similar way. The final result is

ΣL(N) = 2 (L− 1)

[
log

N

2
+ γE − S1

(
L− 3

2

)]
g2
ph − (3L− 7) ζ3 g

4 +

+

[
L− 2

3
π2 ζ3 + (10L− 31) ζ5

]
g6 + · · · . (10.9)

Eq. (10.9) is the generalization of the recent result eq. (5.6). The structure is quite similar,

although eq. (10.9) involves the sum over the singlet anomalous dimensions !
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11. Higher order sum rules: the quadratic case

Let us define higher order sum rules by considering sums of powers of the individual

anomalous dimensions. In particular, we focus on the quadratic sum

Q(s)
L (N) =

∑

k∈ singlets

[
γ

(s)
L,k(N)

]2
. (11.1)

Remarkably, we find simple sum rules also for these higher order sums. We illustrate this

in the special cases L = 4, 5 for s = 1/2. We find again the general representation (valid

for L = 4, 5)

QL(N) =

N/2∑

n=1

∑

ℓ≥1

g2 ℓ+2 qL,ℓ(n), (11.2)

where

L = 4. The argument of the harmonic sums is

S··· ≡ S···(2n). (11.3)

q4,1 =−48S−2−128S2+64S−1,−1+32S−1,1+64S1,−1+128S1,1, (11.4)

q4,2 =−384S−4−832S4+576S−3,−1+256S−3,1+704S−2,−2+384S−2,2

+576S−1,−3+384S−1,3+768S1,−3+1152S1,3+768S2,−2+1280S2,2+576S3,−1

+1024S3,1−256S−2,−1,−1−512S−2,−1,1−256S−2,1,−1−128S−2,1,1−256S−1,−2,−1

−384S−1,−2,1−256S−1,−1,−2−256S−1,−1,2−128S−1,1,−2−128S−1,1,2−256S−1,2,−1

−128S−1,2,1−512S1,−2,−1−256S1,−2,1−256S1,−1,−2−256S1,−1,2

−512S1,1,−2−512S1,1,2−512S1,2,−1−768S1,2,1−512S2,−1,−1−256S2,−1,1

−512S2,1,−1−896S2,1,1. (11.5)

L = 5. The argument of the harmonic sums is

S··· ≡ S···(n). (11.6)

q5,1 = 128S1,1−88S2, (11.7)

q5,2 =−212S4+384S1,3+432S2,2+352S3,1−256S1,1,2

−384S1,2,1−448S2,1,1, (11.8)

q5,3 =−702S6+1616S1,5+2112S2,4+2352S3,3+2072S4,2+1408S5,1

−1536S1,1,4−2080S1,2,3−2464S1,3,2−2304S1,4,1−2336S2,1,3

−2784S2,2,2−2768S2,3,1−2912S3,1,2−2912S3,2,1−2544S4,1,1+768S1,1,2,2

+1536S1,1,3,1+1152S1,2,1,2+1920S1,2,2,1+2304S1,3,1,1+1344S2,1,1,2

+2112S2,1,2,1+2496S2,2,1,1+2688S3,1,1,1. (11.9)
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12. Quadratic sum rules: Structural properties and twist dependent for-

mulas

In complete analogy with the linear sum rules, we can observe basically the same structural

properties also in the case of the quadratic sum rules. In particular the general formula for

QL seems to be

QL(N) =

N
2∑

n1=1

n1∑

n2=1

· · ·
np−1∑

np=1

qL(np), (12.1)

where the number of sums is again p = n−1 for both L = 2n and L = 2n+1, but now the

total transcendentality of the sums in qL is equal to 2 ℓ where ℓ is the loop order ℓ = 1, 2, 3.

Also in this case, we have extended the calculation up to L = 13. Now, the L de-

pendence of the harmonic sums coefficients is quadratic instead of linear and we can write

down the following compact expressions.

12.1 Odd twist

We have, at two loops,

QL(N) =
[
8 (L− 1)2 SX,1,1 − 4

(
2L2 − 7L+ 7

)
SX,2

]
g4 + (12.2)

+
[
− 16 (L− 1)2 SX,1,1,2 + 12 (3L − 7)(L− 1)SX,1,3

−32 (L− 2)(L − 1)SX,1,2,1 − 4
(
12L2 − 74L+ 123

)
SX,4

+4
(
13L2 − 58L+ 73

)
SX,2,2 + 8

(
7L2 − 38L+ 59

)
SX,3,1

−16
(
3L2 − 12L+ 13

)
SX,2,1,1

]
g6 + · · · .

where, again,

SX,a ≡ SX,a

(
N

2

)
, X = {0, · · · , 0}︸ ︷︷ ︸

L−3

2

(12.3)

The cusp anomaly check is clearly passed by the combination

8 (L− 1)2 SX,1,1 g
4 − 16 (L − 1)2 SX,1,1,2 g

6. (12.4)

12.2 Even twist

Due to the larger computational complexity of the even twist case, we only present a

one-loop result. We define in this case

S̃X,a ≡ S̃X,a

(
N

2

)
, X = {0, · · · , 0}︸ ︷︷ ︸

L−2

2

(12.5)

and (notice the most inner 2 ip argument)

S̃0,...,0︸︷︷︸
p

,a(n) =

n∑

i1=1

i1∑

i2=1

i2∑

i=13

· · ·
ip−1∑

ip=1

Sa(2 ip) (12.6)
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One finds for even L ≥ 4

QL(N) =
[
− 8

(
2L2 − 5L+ 4

)
SX,2 − 8 (2L − 5) (L− 2)SX,−2 (12.7)

+8L2 SX,1,1 + 8L (L− 2)SX,1,−1

+8 (L− 2)2 SX,−1,1 + 8L (L− 2)SX,−1,−1

]
g4 + · · ·

13. Large N check for the quadratic sum rules

Here we report the cusp anomalous dimension check for the various formulas computing

quadratic sum rules at L = 4 (two loops) and L = 5 (three loops).

13.1 L=4 at two loops

The squared logarithmic terms are

q4,1 = 128S1,1 + · · · , (13.1)

q4,2 = −512S1,1,−2 − 512S1,1,2 + · · · . (13.2)

Hence, at two loops

q4 = 64 log2 N (g4 − 2 ζ2 g
6 + · · · )

= 64 log2 N (g2 − ζ2 g
4 + · · · )2

= 64 log2 N g4
ph. (13.3)

13.2 L=5 at three loops

The squared logarithmic terms are

q5,1 = 128S1,1 + · · · , (13.4)

q5,2 = −256S1,1,2 + · · · , (13.5)

q5,3 = −1536S1,1,4 + 768S1,1,2,2 + 1536S1,1,3,1 + · · · . (13.6)

Hence, at three loops

q5 = 64 log2 N

(
g4 − 2 ζ2 g

6 +
3π4

20
g8 + · · ·

)

= 64 log2 N

(
g2 − ζ2 g

4 +
11π4

180
g6 + · · ·

)2

= 64 log2 N g4
ph . (13.7)

14. One loop cubic sum rule

It is clear that it is possible to derive sum rules at arbitrary high order. The determination

of the explicit formulas is a matter of computational effort. Here, we just give, as an

example, the cubic sum rule

C(s)
L (N) =

∑

k∈ singlets

[
γ

(s)
L,k(N)

]3
, (14.1)
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for the scalar sector s = 1/2 and odd twist L at one-loop. We have tested it again up to

L = 13. It reads

CL(N) =
[
48 (L − 1)3 SX,1,1,1 − 24 (L− 1)

(
2L2 − 7L+ 7

)
SX,1,2 (14.2)

−48 (L− 2)
(
L2 − 4L+ 7

)
SX,2,1

+8
(
6L3 − 45L2 + 124L − 121

)
SX,3

]
g6 + · · · .

where, again,

SX,a ≡ SX,a

(
N

2

)
, X = {0, · · · , 0}︸ ︷︷ ︸

L−3

2

(14.3)

15. Conclusions

In summary, we have shown that it is useful to define higher-order sum rules for the anoma-

lous dimensions of singlet unpaired twist-operators in N = 4 SYM for arbitrarily high twist.

Of course, these combinations contain less information than the separate anomalous dimen-

sions. However, on the other hand, they admit multi-loop closed expressions in terms of

the usual nested harmonic sums which are ubiquitous in this context. These expressions

provide interesting handles for analytical calculations in higher twist.

The basic technical hint behind the sum rules is that they are related to restricted

traces of powers of the dilatation operator. As such, they are quite simpler objects than

the separate anomalous dimensions. As an analogy, it is typically simpler to focus on the

coefficient of a polynomial instead of looking at its explicit and complicated roots.

Our multi-loop results have been obtained in the sl(2) sector where the long-range

Bethe equations are particularly simple. At one-loop, analogous results have been pre-

sented for the other basic sectors describing purely fermionic or gauge operators. It should

be possible to extend the analysis to these cases at higher loops by working out the per-

turbative expansion of the relevant higher rank long-range equations.

It remains to be understood if the closed expressions we found for the sum rules are

just a curiosity or a manifestation of deeper properties. In this respect, their interpretation

in the light of AdS/CFT duality would certainly be a very interesting issue. Indeed, in this

context, the linear sum rules compute sums of energies of dual string configurations with

a fixed number of spikes, but different values of the internal degrees of freedom associated

with the band of states (for twist > 2) [34]. Hence, on the string side, the proposed sum

rule suggest to investigate the properties of energies after a sort of averaging over these

kinematical features. The powerful analysis in [26] could prove to be useful in this respect.
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A. Symmetric polynomials and sums of powers

Given a finite set of complex numbers x1, . . . , xn ∈ C, the symmetric polynomials

Πk(x1, . . . , xn) are defined as

n∏

i=1

(x− xi) =
n∑

k=0

(−1)k Πk(x1, . . . , xn)xk. (A.1)

Hence,

Π0(x1, . . . , xn) = 1, (A.2)

Π1(x1, . . . , xn) = x1 + · · · xn, (A.3)

Π2(x1, . . . , xn) =
∑

1≤i<j≤n

xi xj, (A.4)

· · · (A.5)

Πn(x1, . . . , xn) =
n∏

i=1

xi. (A.6)

The relation with the symmetric sums of powers

Sk =

k∑

i=1

xk
i , (A.7)

is given by the generating function relation

∞∑

k=0

Πk t
k = exp

(
∞∑

k=1

(−1)k+1 Sk

k
tk

)
, (A.8)

or by the Newton-Girard recursion

(−1)mmΠm +

m∑

k=1

(−1)k+m Πm−k Sk = 0. (A.9)

The resulting map (Π1, . . . ,Πn) ↔ (S1, . . . , Sn) is birational, actually polynomial, and

begins with

S1 = Π1,

S2 = Π2
1 − 2Π2,

S3 = Π3
1 − 3Π1 Π2 + 3Π3,

Π1 = S1,

Π2 = 1
2

(
S2

1 − S2

)
,

Π3 = 1
6

(
S3

1 − 3S1 S2 + 2S3

)
.

(A.10)

B. Rationality proof

Theorem 2. Let R(x) be a rational function of x over Q, i.e. the ratio of two polynomials

in Q[x]. For any polynomial with rational coefficients P (x) ∈ Q[x] one has

∑

x∈C: P (x)=0

R(x) ∈ Q . (B.1)
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Proof. Let d = deg P . For any root of P (x) = 0 we can write the identity

R(x) =
d−1∑

n=0

cn x
n, (B.2)

with suitable coefficients {cn} which are rational functions of the coefficients appearing in

R. They are the same for all roots of P . As is well known (see appendix (A)), the sums

Sn =
∑

x∈C : P (x)=0

xn, (B.3)

are all fully determined as rational functions of the coefficients of P (x). Thus they are

rational and therefore
∑

x∈C: P (x)=0

R(x) =

d−1∑

n=0

cn Sn ∈ Q. (B.4)

♦

This theorem can be greatly extended by replacing x by a finite set of variables and

P (x) = 0 by a system of polynomial equations with rational coefficients. The proof is the

same as in the one dimensional case after reduction by Gröbner basis methods [40].

In order to illustrate the above (constructive) theorem in the univariate case, let us

consider in details as a simple example the derivation of

∑

x6+x+1=0

1

x
= −1. (B.5)

We start from the relation

1

x
= −1 − x5, iff x6 + x+ 1 = 0. (B.6)

Hence ∑

x6+x+1=0

1

x
= −6 −

∑

x6+x+1=0

x5. (B.7)

From the results of appendix (A) we compute for P (x) = x6 + x + 1 the explicit sums of

powers

S1 = S2 = S3 = S4 = 0, S5 = −5. (B.8)

Hence, we have proved that

∑

x6+x+1=0

1

x
= −6 − S5 = −1. (B.9)

C. Harmonic sums with trailing 0 indices and positive indices

A leading 0 index means

S0,X(N) =

N∑

n=1

SX(n). (C.1)
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Clearly, we have

S0(N) = N, (C.2)

S0,0(N) =
N(N + 1)

2 !
, (C.3)

and the general formula

S0,...,0︸︷︷︸
p

(N) =

(
N + p− 1

p

)
. (C.4)

The first non trivial result is

Theorem 3. For any a ≥ 1, we have

S0,a,X(N) = (N + 1)Sa,X − Sa−1,X, (C.5)

Proof. We can prove the theorem by induction on N . Taking the difference of the

equation between N + 1 and N we find

S0,a,X(N + 1) − (N + 2)Sa,X(N + 1) + Sa−1,X(N + 1)

−S0,a,X(N) + (N + 1)Sa,X(N) − Sa−1,X(N) =

= Sa,X(N + 1) − (N + 2)Sa,X(N + 1)

+
1

(N + 1)a−1
SX(N + 1) + (N + 1)Sa,X(N) (C.6)

= Sa,X(N + 1) − Sa,X(N) − N + 2

(N + 1)a
SX(N + 1) +

1

(N + 1)a−1
SX(N + 1)

= Sa,X(N + 1) − Sa,X(N) − 1

(N + 1)a
SX(N + 1) = 0.

♦

The generalization is

Theorem 4. For any a ≥ 1, we have

S0,...,0︸︷︷︸
p

,a,X(N) =
1

p


(N + p)S0,...,0︸︷︷︸

p−1

,a,X − S0,...,0︸︷︷︸
p−1

,a−1,X


 . (C.7)

Proof. It follows from induction over p. Let us assume that eq. (C.7) is true for p for all

N , then we can prove that it is true for p+ 1 by induction over N . Following similar steps
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as in the proof of Theorem C.1 we find

S0,...,0︸︷︷︸
p+1

,a,X(N + 1) − 1

p+ 1


(N + p+ 2)S0,...,0︸︷︷︸

p

,a,X(N + 1) − S0,...,0︸︷︷︸
p

,a−1,X(N + 1)




−S0,...,0︸︷︷︸
p+1

,a,X(N) +
1

p+ 1


(N + p+ 1)S0,...,0︸︷︷︸

p

,a,X(N) − S0,...,0︸︷︷︸
p

,a−1,X(N)




= S0,...,0︸︷︷︸
p

,a,X(N + 1) − N + p+ 1

p+ 1
S0,...,0︸︷︷︸

p−1

,a,X(N + 1) − 1

p+ 1
S0,...,0︸︷︷︸

p

,a,X(N + 1)

+
1

p+ 1
S0,...,0︸︷︷︸

p−1

,a−1,X(N + 1) =
p

p+ 1
S0,...,0︸︷︷︸

p

,a,X(N + 1)

− 1

p+ 1


(N + p+ 1)S0,...,0︸︷︷︸

p−1

,a,X(N + 1) − S0,...,0︸︷︷︸
p−1

,a−1,X(N + 1)


 = 0

♦
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